
API Mgmt and Security Lab

WW SSA

Nov 10, 2020

CONTENTS:

1 Publish and protect modern applications 1
1.1 Class 1 - Understand the infrastructure and the workflow . 1
1.2 Class 2 - Deploy, Publish and Protect Arcadia Web Application . 9
1.3 Class 3 - Publish and Protect Arcadia API . 32

i

ii

CHAPTER

ONE

PUBLISH AND PROTECT MODERN APPLICATIONS

Warning: For any remark or mistake in this lab, please reach out Matthieu DIERICK or fork this repo and fix it
with a merge request.

1.1 Class 1 - Understand the infrastructure and the workflow

Welcome into the NGINX Controller 3.x with BIG-IP Lab

Warning: For any remark or mistake in this lab, please reach out Matthieu DIERICK or fork this repo and fix it
with a merge request.

Note: The video below will explain you how Arcadia Finance application works and is structured. It is important to
understand this part before configuring the lab. In the next section, we present the same if you don’t want to watch the

1

API Mgmt and Security Lab

video.

1.1.1 Architecture of Arcadia Application

Note: We will use the famous Arcadia Finance application in this lab. This application is based on 4 microservices.
You can find below the different IP addresses and Ports used by NGINX and BIG-IP.

Note: This application is available in GitLab in case you want to build your own lab : https://gitlab.com/
arcadia-application

First of all, it is important to understand how Arcadia app is split between microservices

This is how Arcadia App looks like when the 4 microservices are up and running, and you can notice how traffic
is routed based on URI

But you can deploy Arcadia Step by Step

If you deploy only Main App and Back End services.

2 Chapter 1. Publish and protect modern applications

https://gitlab.com/arcadia-application
https://gitlab.com/arcadia-application

API Mgmt and Security Lab

Note: You can see App2 (Money Transfer) and App3 (Refer Friend) are not available. There is dynamic content
showing a WARNING instead of a 404 or blank frame.

If you deploy Main App, Back End and Money Tranfer services.

1.1. Class 1 - Understand the infrastructure and the workflow 3

API Mgmt and Security Lab

If you deploy Main App, Back End, Money Tranfer and Refer Friend services.

The diagram belows show the IP addresses and the ports used for all the routes

Note: For a lab standpoints, these IP addresses and ports does not change. But in a real life, they are dynamic.

4 Chapter 1. Publish and protect modern applications

API Mgmt and Security Lab

1.1.2 Workflow of the demo

The demo is split in 3 classes

• Deploy, publish and protect Arcadia Web application

– Deploy and publish Arcadia Main App

– Deploy and publish Money Transfer App

– Deploy and publish Refer Friends App

– Apply WAF policy

• Publish and protect Arcadia API

– Publish the API using an OpenAPI 3.0 spec file

– Protect the API with Advanced WAF and APM using OpenAPI 3.0 spec file

– Discover the new Developer Portal

Step 1 - DevOps deploy Arcadia application

Note: Goal is to use the GUI in the NGINX Controller for our traditional customers. NetOps will configure the
services (MainApp and BackEnd) manually.

Tasks:

1. DevOps commit a new code in GitLab in order to publish a brand new application “Arcadia Bank”

2. GitLab webhooks this commit and asks Jenkins to run a pipeline. This pipeline:

1. Deploy Arcadia application in Kubernetes (Terraform).

2. Deploy nodeports in Kubernetes (but it could be KIC) (Terraform).

3. Deploy NGINX+ instances (ADC) in Docker, in front of this K8S cluster (Terraform)

4. Create Gateways in NGINX Controller for each NGINX+ instance (Ansible)

5. Deploy AS3 template into front BIGIP to publish publically the application - without WAF (Ansible)

3. NetOps create ADC configuration in NGINX controller in order to “route” traffic to the right K8S service

1. MainApp /* to service MainApp

2. BackEnd /file* to service BackEnd

1.1. Class 1 - Understand the infrastructure and the workflow 5

API Mgmt and Security Lab

Warning: At this stage, the first part of the application is published and can be accessed and demonstrated. We
can see Money Transfert application is not yet there, same for Refer Friends.

Step 2 - DevOps deploy Money Transfer application

Note: Goal is to demonstrate NGINX Controller has a REST API to configure objects. NetOps will configure the
service (Money Transfer) via REST API.

Tasks:

1. DevOps commit a new code in GitLab in order to publish the second part of the Arcadia Bank website. This
new application allows money transfer between friends.

2. GitLab webhooks this commit and ask Jenkins to run a pipeline. This pipeline:

1. Deploy Money Transfer application in Kubernetes (Terraform)

2. Deploy nodeports in Kubernetes (Terraform)

3. NetOps use REST API to publish this new app on NGINX+ instances

6 Chapter 1. Publish and protect modern applications

API Mgmt and Security Lab

Warning: At this stage, the Money Transfer application is published and can be accessed and demonstrated

Step 3 - DevOps deploy Refer Friends application

Note: Goal is to demonstrate NGINX Controller can be part of the application lifecycle and CICD. NetOps don’t
configure anything.

Tasks:

1. DevOps commit a new code in GitLab in order to publish the third and last part of the Arcadia Bank website.
This new application allow a customer to refer friends with their email address.

2. GitLab webhooks this commit and ask Jenkins to run a Pipeline. This pipeline:

1. Deploy Refer Friends application in Kubernetes (Terraform)

2. Deploy nodeports in Kubernetes (Terraform)

3. Configure all components in NGINX Controller (Ansible)

1.1. Class 1 - Understand the infrastructure and the workflow 7

API Mgmt and Security Lab

Warning: At this stage, the Refer Friends application is published and can be accessed and demonstrated. The
Arcadia Bank website is finished, but not yet secured.

Step 4 - NetOps/SecOps publish WAF policy to protect Arcadia application

Note: Goal is to demonstrate BIG-IP Advanced WAF has a Declarative API interface to push WAF policies.

Task:

1. NetOps run a Jenkins pipeline that will push a new AS3 declaration with a WAF policy built by Secops

Warning: At this stage, the Arcadia Bank website is published and secured.

Step 5 - Publish Arcadia API

Note: Goal is to demonstrate the new Controller capabilties with API management and gateway

Task:

1. DevOps provide with an API specification file (OpenAPI 3.0 - OAS3)

2. NetOps import this file into the Controller APIm and publish the API

3. SecOps import his file into the BIG-IP and protect the API (WAF + Access)

4. Developpers can access the new Developper Portal

8 Chapter 1. Publish and protect modern applications

API Mgmt and Security Lab

1.2 Class 2 - Deploy, Publish and Protect Arcadia Web Application

In this section, we will deploy, publish and protect Arcadia application

1.2.1 DevOps deploy Arcadia Application - Main app

In this module, we will deploy the 2 main containers for Arcadia Bank application and we will publish them.

Note: At the end of this module, Arcadia Bank application will look like this.

Note: As a DevOps, you will deploy Arcadia Application (main and back end pods) with an automation tool set

Step 1 - Deploy Arcadia Main app with a CI/CD pipeline like a DevOps

Connect to Jumhost RDP and Login as user / user

1. Open Chrome, you can notice Chrome opens all the tabs for you

2. Login to all tools

1. Controller : admin@nginx-udf.internal / admin123!

2. Jenkins : admin / admin

3. GitLab : root / F5twister$

1.2. Class 2 - Deploy, Publish and Protect Arcadia Web Application 9

mailto:admin@nginx-udf.internal

API Mgmt and Security Lab

Warning: If GitLab does not start, restart the docker in the GitLab VM (WebSSH > docker restart
gitlab). Wait 5 minutes.

4. Kubernetes : click on skip

5. BIG-IP : admin / admin

3. In Gitlab, click on Administrator / Arcadia-MainApp

1. Click on file deploy

2. Click edit and make a modification, like YES !!!!!

3. Click Commit changes

Note: At this moment, you simulate a commit like a DevOps. This commit will trigger a webhook to Jenkins,
so that Jenkins executes a pipeline.

1. In Jenkins, click on DeployMainApp pipeline

2. A pipeline is running, click on it

3. You can follow the steps

Note: At this stage, Arcadia Main app and Back End app are deployed un K8S. But you need to publish them with
NGINX+ via the controller.

10 Chapter 1. Publish and protect modern applications

API Mgmt and Security Lab

Step 2 - Publish Arcadia application with NGINX+ and Controller

The Jenkins pipeline did several things

1. Deployed Arcadia application (main and back end pods) in Kubernetes

1. Connect to Kubernetes and check that.

2. You can see 2 deployments (main and back) with nodeports services

2. Started 3 NGINX+ instances in a docker

1. WebSSH to CICD and DOCKER (NGINX API gw, Dev Portal)

2. Run a docker ps

ubuntu@ip-10-1-1-9:~$ docker ps
CONTAINER ID IMAGE COMMAND
→˓CREATED STATUS PORTS
→˓ NAMES
bf86e23a9807 nginx-plus:36v1 "sh /entrypoint.sh" 33
→˓seconds ago Up 31 seconds 10.1.20.9:8080->80/tcp, 10.1.20.9:8443->
→˓443/tcp NginxPlusAPI
74d679bdf5fb nginx-plus:36v1 "sh /entrypoint.sh" 33
→˓seconds ago Up 31 seconds 80/tcp, 10.1.20.12:8090->8090/tcp
→˓ NginxPlusDevPortal
ac12c0f3148a nginx-plus:36v1 "sh /entrypoint.sh" 33
→˓seconds ago Up 32 seconds 10.1.20.10:8080->80/tcp, 10.1.20.10:8443->
→˓443/tcp NginxPlusWebApp
ab75d7bd60bb nginx "nginx -g 'daemon of..." 7
→˓months ago Up 13 hours 0.0.0.0:80->80/tcp
→˓ lab-nginx
35ddc5adc34d sameersbn/bind:9.11.3-20190706 "/sbin/entrypoint.sh..." 9
→˓months ago Up 13 hours 0.0.0.0:53->53/tcp, 0.0.0.0:10000->10000/
→˓tcp, 0.0.0.0:53->53/udp bind

3. Check if NGINX+ instances appears in the controller

1. In the controller GUI, click top left corner icon, and infrastructure

2. You can see 3 instances running

1.2. Class 2 - Deploy, Publish and Protect Arcadia Web Application 11

API Mgmt and Security Lab

4. Deployed an AS3 declaration into the BIG-IP in order to publish the NGINX+ instance externally

Note: It is time to configure the NGINX+ instances in order to publish Arcadia application (main and back services)

Configure the Controller

Warning: For all the commands below, there are CASE SENSITIVE

1. Connect to the controller (admin@nginx-udf.internal / admin123!)

2. Click on top left corner icon and Services

3. Click on Apps and create app

1. Application name : app_webapp

2. Display name : Web Application Arcadia

3. Environment : Production Environment

4. Click submit

12 Chapter 1. Publish and protect modern applications

mailto:admin@nginx-udf.internal

API Mgmt and Security Lab

5. Click on Create Component

1. Configure the component as below

1.2. Class 2 - Deploy, Publish and Protect Arcadia Web Application 13

API Mgmt and Security Lab

Warning: Don’t forget to click on done

14 Chapter 1. Publish and protect modern applications

API Mgmt and Security Lab

1.2. Class 2 - Deploy, Publish and Protect Arcadia Web Application 15

API Mgmt and Security Lab

Warning: Don’t forget to click on done twice

Note: Click submit

1. Get back to Web App and add a new Component

2. Do the same, but for the back end service

16 Chapter 1. Publish and protect modern applications

API Mgmt and Security Lab

1.2. Class 2 - Deploy, Publish and Protect Arcadia Web Application 17

API Mgmt and Security Lab

Warning: Don’t forget to click on done

18 Chapter 1. Publish and protect modern applications

API Mgmt and Security Lab

Warning: Don’t forget to click on done twice

Note: Click submit

1.2. Class 2 - Deploy, Publish and Protect Arcadia Web Application 19

API Mgmt and Security Lab

Step 3 - Test your Controller deployment

1. Open Chrome and click on the bookmark Arcadia Finance

2. Click on Login

3. Login as matt / ilovef5

4. You should see the main app wihtout App2 nor App3

Warning: Congratulations, you have deployed your first modern app with NGINX+ and the NGINX Controller

1.2.2 DevOps deploy Money Transfer application

In this module, we will deploy the Money Tranfer container for Arcadia Bank application and we will publish it.

Note: At the end of this module, Arcadia Bank application will look like this.

Note: In this lab, we will automate some tasks in the controller. As you noticed in the previous lab, it is long to create
and you can make mistakes. We will deploy a new component using the NGINX Controller API.

20 Chapter 1. Publish and protect modern applications

API Mgmt and Security Lab

Step 1 - Deploy Arcadia App2 with a CI/CD pipeline like a DevOps

1. In Gitlab, click on Administrator / Arcadia-App2

1. Click on file deploy

2. Click edit and make a modification - like YES !!!!!

3. Click Commit changes

Note: At this moment, you simulate a commit like a DevOps. This commit will trigger a webhook to
Jenkins, so that Jenkins execute a pipeline.

2. In Jenkins, click on DeployApp2 pipeline

3. A pipeline is running, click on it

4. You can follow the steps

Note: At this stage, App2 (Money Transfer app) is deployed un K8S. But you need to publish it via the controller.

Step 2 - Publish Money Transfer App with NGINX+ and Controller

1. In the Jumphost open Postman

2. Open collection Deploy Component App2

1. Send the first call Log in NGINX Controller

2. Send the second call Create App2 Component

Note: With one click, you created the component. Fast and no human mistake.

3. Connect to Controller GUI and check the new component in web application arcadia

1.2. Class 2 - Deploy, Publish and Protect Arcadia Web Application 21

API Mgmt and Security Lab

Note: You can notice the new Money Transfer component is created

4. In Chrome refresh the page. You can see the new App Money Transfer

5. Transfer some money to your friends in order to populate analytics

22 Chapter 1. Publish and protect modern applications

API Mgmt and Security Lab

1.2.3 DevOps deploy Refer Friends Application

In this module, we will deploy the Refer Friends container for Arcadia Bank web application and we will publish it.

Note: At the end of this module, Arcadia Bank application will look like this.

Note: In this lab, all tasks will be automated. DevOps will deploy the app in K8S, and NetOps will create the new
component at the same time.

Step 1 - Deploy Arcadia App3 and the new componenent with a CI/CD pipeline

1. In Gitlab, click on Administrator / Arcadia-App3

1. Click on file deploy

2. Click edit and make a modification - like YES !!!!!

3. Click Commit changes

Note: At this moment, you simulate a commit like a DevOps. This commit will trigger a webhook to
Jenkins, so that Jenkins execute a pipeline.

2. In Jenkins, click on DeployApp3 pipeline

1.2. Class 2 - Deploy, Publish and Protect Arcadia Web Application 23

API Mgmt and Security Lab

3. A pipeline is running, click on it

4. You can follow the steps

5. Connect to Controller GUI and check the new component in web application arcadia

6. In Chrome refresh the page. You can see the new App Refer friends

Note: Congrats, as you can notice, with one commit in Gitlab, you triggered a webhook that deployed the app and

24 Chapter 1. Publish and protect modern applications

API Mgmt and Security Lab

the infrastructure

Warning: Now, it’s time to protect Arcadia Finance web application with a BIG-IP.

1.2.4 Protect Arcadia Application with Declarative WAF

Warning: ONLY IF YOU START THE LAB FROM HERE - ELSE DON’T READ THIS WARNING. If you
want to start from here (because you are only interested by Declarative WAF), and do not want to run all the steps
before, you can use Postman and Jenkins to create everything for you. To do so, follow the steps below.

1. Open Jenkins and run the pipeline DeployMainApp

2. Open Postman, and select the collection Arcadia Manual Pipeline - no CICD

3. Run the calls

1. Login to NGINX Controller

2. Create WebApp Application

3. Create MainApp Component

4. Create BackEnd Component

4. Open Jenkins and run the pipeline DeployApp2

5. Open Postman, and select the collection Arcadia Manual Pipeline - no CICD

6. Run the call

1. Create App2 Component

7. Open Jenkins and run the pipeline DeployApp3

Now, Arcadia App is fully deployed and the NGINX Controller is set up.

In this module, we will deploy a WAF policy to protect Arcadia Bank application and we will publish it. With v16.0
(and in draft in v15.1), the WAF policy can be deployed via a declarative call, and the WAF policy itself is a JSON
file.

Note: We use the new v15.1/v16.0 Declarative WAF policy. You can retrieve the JSON Policy in the GitLab repo and
below.

Note: You can learn more on the Declarative WAF policy here : https://f5.sharepoint.com/sites/
EMEASystemsEngineering/SitePages/Adv.-WAF-v16.0-Declarative-API.aspx

{
"policy": {

"name": "policy-fund-1",
"description": "Policy Example - Rapid Deployment",
"template": {

"name": "POLICY_TEMPLATE_RAPID_DEPLOYMENT"

(continues on next page)

1.2. Class 2 - Deploy, Publish and Protect Arcadia Web Application 25

https://f5.sharepoint.com/sites/EMEASystemsEngineering/SitePages/Adv.-WAF-v16.0-Declarative-API.aspx
https://f5.sharepoint.com/sites/EMEASystemsEngineering/SitePages/Adv.-WAF-v16.0-Declarative-API.aspx

API Mgmt and Security Lab

(continued from previous page)

},
"enforcementMode": "blocking",
"server-technologies": [

{
"serverTechnologyName": "MySQL"

},
{

"serverTechnologyName": "Unix/Linux"
},
{

"serverTechnologyName": "MongoDB"
}

],
"signature-settings": {

"signatureStaging": false
},
"policy-builder": {

"learnOnlyFromNonBotTraffic": false
},
"response-pages": [

{
"responsePageType": "ajax",
"ajaxEnabled": true,
"ajaxPopupMessage": "My customized popup message! Your support ID is:

→˓<%TS.request.ID()%>"
}
]

}
}

Note: You can notice this JSON policy is based in Rapid Deployment template and we added few things like Server-
Technologies, Signature Staging, Policy Buidler and Response Page.

Step 1 - Send an attack

1. In Chrome, in Arcadia web application, refer a friend

1. Refer bob@sponge.com

26 Chapter 1. Publish and protect modern applications

mailto:bob@sponge.com

API Mgmt and Security Lab

2. Send an attack with the below payload in the refer friend field

{\"$ne\":\"michael@gmail.com\"}

Note: This attacks means return everything not equals to michael@gmail.com

3. Attack succeed and you can get the DB content

1.2. Class 2 - Deploy, Publish and Protect Arcadia Web Application 27

API Mgmt and Security Lab

Step 2 - Push AS3 declaration to deploy the WAF policy

Note: It is important to understand what we are doing here. We are leveraging all the new v16.0 Adv. WAF
Declarative policy features. With one API call (done by Jenkins and Ansible), we will deploy a new AS3 declaration
with a WAF policy.

Check the files used here

1. In Gitlab, open Administrator / as3-waf project

2. You can see several files, but the most important are

1. playbook-v16.yaml

2. as3-v16.json

3. policy-fund-1.json

3. Open policy-fund-1.json

{
"policy": {

"name": "policy-fund-1",
"description": "Policy Example - Rapid Deployment",
"template": {

"name": "POLICY_TEMPLATE_RAPID_DEPLOYMENT"
},
"enforcementMode": "blocking",
"server-technologies": [

{
"serverTechnologyName": "MySQL"

},
{

"serverTechnologyName": "Unix/Linux"
},
{

"serverTechnologyName": "MongoDB"
}

],
"signature-settings": {

"signatureStaging": false
},
"policy-builder": {

"learnOnlyFromNonBotTraffic": false
},
"response-pages": [

{
"responsePageType": "ajax",
"ajaxEnabled": true,
"ajaxPopupMessage": "My customized popup message! Your

→˓support ID is: <%TS.request.ID()%>"
}
]

}
}

28 Chapter 1. Publish and protect modern applications

API Mgmt and Security Lab

Note: This is our declarative JSON WAF policy

4. Open as3-v16.json

{
"class": "AS3",
"action": "deploy",
"persist": true,
"declaration": {

"class": "ADC",
"schemaVersion": "3.2.0",
"id": "Prod_Web_AS3",
"Web-Prod": {

"class": "Tenant",
"defaultRouteDomain": 0,
"arcadia": {

"class": "Application",
"template": "generic",
"VS_WebApp": {

"class": "Service_HTTPS",
"remark": "Accepts HTTPS/TLS connections on port 443",
"virtualAddresses": ["10.1.10.26"],
"redirect80": false,
"pool": "pool_NGINX_WebApp",
"policyWAF": {

"use": "Arcadia_WAF_policy"
},
"securityLogProfiles": [{

"bigip": "/Common/Log all requests"
}],
"profileTCP": {

"egress": "wan",
"ingress": { "use": "TCP_Profile" } },

"profileHTTP": { "use": "custom_http_profile" },
"serverTLS": { "bigip": "/Common/arcadia_client_ssl" }

},
"Arcadia_WAF_policy": {

"class": "WAF_Policy",
"url": "http://10.1.20.4/root/as3-waf/-/raw/master/

→˓policy-fund-1.json",
"ignoreChanges": true

},
"pool_NGINX_WebApp": {

"class": "Pool",
"monitors": ["http"],
"members": [{

"servicePort": 8080,
"serverAddresses": ["10.1.20.10"]

}]
},
"custom_http_profile": {

"class": "HTTP_Profile",
"xForwardedFor": true

},
"TCP_Profile": {

"class": "TCP_Profile",

(continues on next page)

1.2. Class 2 - Deploy, Publish and Protect Arcadia Web Application 29

API Mgmt and Security Lab

(continued from previous page)

"idleTimeout": 60 }
}

}
}

}

Note: In this AS3 declaration, you can notice the new v16.0 Adv. WAF Reference section
(Arcadia_WAF_policy). This section refers to our external JSON policy file, and will upload,
import and apply the policy in the BIG-IP.

5. Open playbook-v16.yaml`

- hosts: bigip
connection: local
gather_facts: false
vars:

my_admin: "admin"
my_password: "admin"
bigip: "10.1.1.12"

tasks:
- name: Deploy AS3 WebApp

uri:
url: "https://{{ bigip }}/mgmt/shared/appsvcs/declare"
method: POST
headers:

"Content-Type": "application/json"
"Authorization": "Basic YWRtaW46YWRtaW4="

body: "{{ lookup('file','as3-v16.json') }}"
body_format: json
validate_certs: no
status_code: 200

Note: You can see the playbook is very simple in v16.0 thanks to the AS3 call. It will do all the job
for us. This playbook is just sending an AS3 declaration call to the BIGIP.

30 Chapter 1. Publish and protect modern applications

API Mgmt and Security Lab

Run the CI/CD pipeline

1. In Jenkins, click on DeployWAF pipeline

2. Run the pipeline

3. In Chrome, launch an incognito window, and retry the attack

{\"$ne\":\"michael@gmail.com\"}

4. Attack fails and you can notice the AJAX blocking page set in the JSON declarative WAF policy

5. Check logs in the BIG-IP

1.2. Class 2 - Deploy, Publish and Protect Arcadia Web Application 31

API Mgmt and Security Lab

1.3 Class 3 - Publish and Protect Arcadia API

In this section, we will publish and protect Arcadia API. There are 4 API allowing us to :

• See last transactions

• Buy stocks

• Sell stocks

• Make a money transfer

The API specification is available here : https://app.swaggerhub.com/apis/F5EMEASSA/Arcadia-OAS3/2.0.1-schema

1.3.1 Module 1 - Publish API with OAS3 spec file from the Controller GUI

Note: In this section we will push OAS3 specification file into the controller GUI in order to create the API

Connect to Controller GUI via your laptop’s browser or the jumphost

login: admin@nginx-udf.internal

password: admin123!

32 Chapter 1. Publish and protect modern applications

https://app.swaggerhub.com/apis/F5EMEASSA/Arcadia-OAS3/2.0.1-schema
mailto:admin@nginx-udf.internal

API Mgmt and Security Lab

Step 1 - Create an New Application

1. Click on top left corner icon, and click on Apps

2. Click Create

3. Create a new Application

1. name : app_api

2. display name : API Application Arcadia

3. Environment : Production Environment

4. Click Summit

Step 2 - Create an API Definition

1. Click on the left menu APIs

2. Click Create API Definition

1. Name : arcadia-api-def

2. Display Name : Arcadia API Definition

3. Version : v1

4. Select OpenAPI specification

1. and Copy and paste specification text if you are not connected in the jumphost
from here : https://app.swaggerhub.com/apis/F5EMEASSA/Arcadia-OAS3/2.0.1-schema

2. or Import file if your are connected in the jumphost, the file is located in the Desktop folder
and its name is OAS3-Arcadia.yaml

1.3. Class 3 - Publish and Protect Arcadia API 33

https://app.swaggerhub.com/apis/F5EMEASSA/Arcadia-OAS3/2.0.1-schema

API Mgmt and Security Lab

5. Click Next

6. You can see all the resources have been imported from the swagger file and please open one resource
to check its content.

34 Chapter 1. Publish and protect modern applications

API Mgmt and Security Lab

1.3. Class 3 - Publish and Protect Arcadia API 35

API Mgmt and Security Lab

7. Click Summit

36 Chapter 1. Publish and protect modern applications

API Mgmt and Security Lab

Step 3 - Publish the API

Note: At this stage, the API definition is created. So the controller knows the differents URI but doesn’t know yet
where to forward the traffic to.

1. Click on the API definition raw, and on the right frame, click on + Add Published API

2. Configure the mandatory settings

1. Name: prod-api

2. Display Name: Production API

3. Click Next

4. Configure the deployment

1. Environment: Production Environment

2. App: API Application Arcadia

3. Gateways: Gateway API

1.3. Class 3 - Publish and Protect Arcadia API 37

API Mgmt and Security Lab

5. It is time to configure the Routing. It is similar to the components in the WebApp configuration

6. Create a new component, routing the traffic to the MainApp

1. Click Add New in the Components section and configure it as below

38 Chapter 1. Publish and protect modern applications

API Mgmt and Security Lab

1.3. Class 3 - Publish and Protect Arcadia API 39

API Mgmt and Security Lab

Note: Click Done then click Next

Note: We only configure one workload as the API we will test is hosted in the main app K8S service (sell
stocks and buy stocks)

2. Click Next until the end and click Submit

7. Now, drag and drop the 3 URI starting by /trading to the right Component MainApp

40 Chapter 1. Publish and protect modern applications

API Mgmt and Security Lab

8. Click Next and Submit

Step 4 - Test your API

RDP to the jumphost

login: user

password: user

1. Open Postman

2. Open up the collection Arcadia API

3. Make 2 calls

1. Last transactions

2. POST Buy Stocks

4. Both works and are routed to the MainApp pod in K8S thanks to the NIGNX+ API GW.

1.3. Class 3 - Publish and Protect Arcadia API 41

API Mgmt and Security Lab

5. You can check in the Web Application in Chrome if your Buy Stock call passed. It should appear in the last
transaction GUI.

Step 5 - Look at the analytics

1. In the controler GUI

2. Click on the left icon Apps

3. Click on your API Application Arcadia

4. You can see your analytics for this API

42 Chapter 1. Publish and protect modern applications

API Mgmt and Security Lab

1.3.2 Module 2 - Publish API with OAS3 spec file via API

Note: We will clean up the previous lab in order to configure exactly the same objetcts but with API calls only.

Clean up the APIm configuration

1. In the controller GUI, go to APIs left menu and click on the existing API definintion arcadia-api-def

2. On the right panel

1. Delete the Production API by clicking the trash button

2. Delete the API definition arcadia-api-def

Note: Your API Definitions environment is clean.

1.3. Class 3 - Publish and Protect Arcadia API 43

API Mgmt and Security Lab

Create and publish an API Definition with the Controller API

Note: We will execute exactly the same job but by using the NGINX Controller control plane only. No GUI.

1. Connect to the Jumphost (user / user)

2. Launch Postman

1. Open Arcadia OAS collection

2. And run all calls from top to bottom

Note: For every call, check what is happening in the controller GUI

3. At then end, you should have the same results as the previous lab.

4. Edit the Published API

5. Check the Routing. You can see the routes are imported from the OAS3 file and the mapping is done with the
components.

44 Chapter 1. Publish and protect modern applications

API Mgmt and Security Lab

6. Make a quick test with the Arcadia API postman collection

Warning: Check the call Import API Definition OAS3, we imported an OAS3 YAML File directly in
the Controller with all the definitions and documentations

Note: In a near future, we will learn more on API definition versions

Warning: As you can notice, there is no security applied on the Component. Let’s move to the next lab to
assign a BIG-IP and Controller security policy

1.3.3 Module 3 - Protect Arcadia API with Adv. Waf and APM (Bearer SSO)

In this lab we will deploy a BIG-IP security policy based on Adv. WAF and APM, in front of the NGINX+ API GW.
In order to make life better and simple for DevOps, we will delegate all the Authentication layer to APM. APM will
authenticate JWT tokens coming from different providers with different keys, and we will use APM Bearer SSO in
order to share a unique JWT key with the API gateways.

Note: APM will download keys from external providers automatically (by using OIDC discovery process) and will
use another an unique key for internal SSO with NGINX API Gateways. This will allow DevOps to know only one
key for all their deployments. And SecOps will manage the external providers.

1.3. Class 3 - Publish and Protect Arcadia API 45

API Mgmt and Security Lab

Configure NGINX Controller with a new Identity Provider

1. In the left menu, click on Identity Provider icon

2. Create a new Identity Provider as below. Use the JSON code below for the JWK

{
"keys": [

{
"k": "aWxvdmVuZ2lueA",
"kid": "9876543210",
"kty": "oct"
}

]
}

Note: I invite you to decode the “k” value to know what is the key. As you can notice, we don’t use a RSA
key, but a secret (just to simplify the lab). This secret is BASE64 encoded.

46 Chapter 1. Publish and protect modern applications

API Mgmt and Security Lab

3. Assign this Identity Provider with your API Definition

1. Get back to your API definition and edit the Published API

1.3. Class 3 - Publish and Protect Arcadia API 47

API Mgmt and Security Lab

2. Click on routing and edit the Security Settings

3. Click on Add Authentication

48 Chapter 1. Publish and protect modern applications

API Mgmt and Security Lab

4. Select the provider created previouly JWT Bearer SSO and Bearer

5. Click Done and Submit

6. Click Submit again

4. Make a quick test with Postman by sending a request to the Arcadia API like Last Transactions or
Buy stocks

1. You can see a 401 Unauthorized

1.3. Class 3 - Publish and Protect Arcadia API 49

API Mgmt and Security Lab

Note: As you don’t insert any JWT token in your request, the API GW rejected the request. It is time to configure
APM to inject this JWT Bearer SSO

Configure Adv. WAF and APM

Note: In this lab we will use Access Guided Configuration and we will do some custom tuning in the policies. There
are several ways to protect API with BIG-IP, but at the moment, we will focus on AGC so that you can understand
how it works. GSA team is working on a dedicated UDF Blueprint for API Declarative WAF policy with v16.0

1. Connect to the Jumhost (user / user)

2. Open Chrome and connect to the BIG-IP (admin / admin)

3. Delete the existing vs-arcadia-api Virtual Server in the BIG-IP. We are going to create a new one from
the Guided Configuration.

4. Create a JWK Bearer SSO key. If you remember below, the key (encoded64) was aWxvdmVuZ2lueA, and
decoded64 ilovenginx

1. Click Access > Federation > JSON Web Token > Key Configuration

2. Create a new key as below with the value ilovenginx as Shared Secret

50 Chapter 1. Publish and protect modern applications

API Mgmt and Security Lab

Warning: Don’t forget to set an ID. It is mandatory in order to use this key in the Bearer SSO
profile

5. In Access, click on Guided Configuration and select the template API Protection Proxy in
API Protection group

6. Configure the template as below.

Warning: The AGC template does not support yet OpenAPI spec file Version 3. But only Version 2. We
will use another version of the OAS file.

1.3. Class 3 - Publish and Protect Arcadia API 51

API Mgmt and Security Lab

Note: The OAS file is located in Downloads directory and its name is swaggerArcadia2.json

1. Check the boxes Use Rate Limiting and OAuth 2.0

• Select the default Servrer at the bottom of the screen

52 Chapter 1. Publish and protect modern applications

API Mgmt and Security Lab

Note: You can notice the URI and the back server have been imported from the OAS2 file

1.3. Class 3 - Publish and Protect Arcadia API 53

API Mgmt and Security Lab

2. Select AzureAD AAD-F5Sales as provider

Warning: Due to a bug in AGC, we can’t add more providers here. We will modify the list later on
directly in the APM configuraiton (ID 835509)

54 Chapter 1. Publish and protect modern applications

API Mgmt and Security Lab

3. Configure Signle Sign-On Settings as below

1.3. Class 3 - Publish and Protect Arcadia API 55

API Mgmt and Security Lab

Note: We will focus on Claims later on

4. Configure Rate Limiting as below. We will limit request per user based on their Email address ex-
tracted from the JWT token. The value used for the User ID Key is subsession.oauth.scope.
last.jwt.Email

56 Chapter 1. Publish and protect modern applications

API Mgmt and Security Lab

1. Configure the Virtual Server as below

• VS : 10.1.10.18

• Log All Requests

• Client SSL arcadia_client_ssl

1.3. Class 3 - Publish and Protect Arcadia API 57

API Mgmt and Security Lab

2. Click Deploy

7. Now we have to add manually the 2 more providers in the APM configuration (due to the BUGID in AGC 6.0)

1. Unstrict the configuration in AGC, by clicking on the lock icon and approve the change.

2. Click Access > Federation > JSON Web Token > Provider List and edit the existing
profile

58 Chapter 1. Publish and protect modern applications

API Mgmt and Security Lab

3. Add provider1 and provider2 into the list

Note: Congratulation, Arcadia API is protected by an Advanced WAF (you can check the policy) and APM in order
to authenticate requests from 3 providers.

Note: I invite you to check the Access > API Protection configuration

Warning: In order to use Oauth with Azure AD, you have to force an update of the Azure JWT keys. In
Federation > Oauth Client / Resource Server > Provider, click on Start button to force
APM to download the new keys.

1.3. Class 3 - Publish and Protect Arcadia API 59

API Mgmt and Security Lab

Test your protected API with Authentication, WAF and Rate Limiting

1. Open Postman and select the Arcadia API collection

2. Select one call, the one you want.

3. F5ers only - For F5 partners and customers, please jump to the next bullet
point. In authentication select Oauth 2.0. We will start with an Azure AD provider - similating a
partner having an AAD subcription and wanting to use it.

1. Click Get New Token

2. I have already set the values for the Oauth Client. As a reminder, here, Postman is the Oauth Agent - it is
requesting the Access Token

3. Authenticate with your Corporate F5 account. If it fails, it means you are not part of the F5 Sales Azure
tenant (Open an IT Ticket)

4. When done, click Use token and send your request.

Note: It passes. Token is approved by APM, and a new token is generated by APM and sent to the NGINX
API GW (Bearer SSO)

4. Available for F5ers, partners and customers. Now, try with the 2 other providers (partner1
and partner2)

1. You can find the tokens on the desktop in the file JWT tokens.txt

2. Don’t use Oauth 2.0, as we already have the tokens. But use Bearer Token instead. I
generated these tokens from the website http://jwtbuilder.jamiekurtz.com/

Partner 1:

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.
→˓eyJpc3MiOiJwYXJ0bmVyMSIsImlhdCI6MTU5MzQ1NTk4NSwiZXhwIjoxNjg4MDYzOTg1LCJhdWQiOiJhcGkuYXJjYWRpYS1maW5hbmNlLmlvIiwic3ViIjoiYXBpLmFyY2FkaWEtZmluYW5jZS5pbyIsIkdpdmVuTmFtZSI6IkpvaG5ueSIsIlN1cm5hbWUiOiJSb2NrZXQiLCJFbWFpbCI6Impyb2NrZXRAZXhhbXBsZS5jb20iLCJSb2xlIjoiTWFuYWdlciJ9.
→˓JRboDfKWvSLVU3md6OULGifoVxJ-ryx7y-0DKrOlPOM (continues on next page)

60 Chapter 1. Publish and protect modern applications

http://jwtbuilder.jamiekurtz.com/

API Mgmt and Security Lab

(continued from previous page)

Partner 2:

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.
→˓eyJpc3MiOiJwYXJ0bmVyMiIsImlhdCI6MTU5MzQ1NTk4NSwiZXhwIjoxNjg4MDYzOTg1LCJhdWQiOiJhcGkuYXJjYWRpYS1maW5hbmNlLmlvIiwic3ViIjoiYXBpLmFyY2FkaWEtZmluYW5jZS5pbyIsIkdpdmVuTmFtZSI6IkJvYiIsIlN1cm5hbWUiOiJUaGUgU3BvbmdlIiwiRW1haWwiOiJib2JAc3BvbmdlLmNvbSIsIlJvbGUiOiJDb250cmFjdG9yIn0.
→˓aqTxd6X4z7EFijJsyiuq8mZAKMLG519Bmjz1ra24L-s

5. Test the Rate Limiting by sending 4 calls with the same token. The 4th will be block. You can notice the
reponse code 429 Too Many Requests

6. Send an attack

1. Select the call POST Buy Stocks XSS attack

2. Send the request and notice the 200 OK response. It means the WAF didn’t block the request

3. Check why and change your policy accordingly.

Note: Tip : attack signatures are in Staging mode

1.3.4 Module 4 - Fine grained access with NGINX Controller APIm module

In this lab, we will allow access to the Arcadia API, only for Manager Role. To do so, we will first check the JWT
token claims and understand how to forward a claim from a provider into the Bearer SSO.

Step 1 - Understand the JWT token claims

In the previous lab, we used 2 tokens:

Partner 1:

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.
→˓eyJpc3MiOiJwYXJ0bmVyMSIsImlhdCI6MTU5MzQ1NTk4NSwiZXhwIjoxNjg4MDYzOTg1LCJhdWQiOiJhcGkuYXJjYWRpYS1maW5hbmNlLmlvIiwic3ViIjoiYXBpLmFyY2FkaWEtZmluYW5jZS5pbyIsIkdpdmVuTmFtZSI6IkpvaG5ueSIsIlN1cm5hbWUiOiJSb2NrZXQiLCJFbWFpbCI6Impyb2NrZXRAZXhhbXBsZS5jb20iLCJSb2xlIjoiTWFuYWdlciJ9.
→˓JRboDfKWvSLVU3md6OULGifoVxJ-ryx7y-0DKrOlPOM

1.3. Class 3 - Publish and Protect Arcadia API 61

API Mgmt and Security Lab

Partner 2:

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.
→˓eyJpc3MiOiJwYXJ0bmVyMiIsImlhdCI6MTU5MzQ1NTk4NSwiZXhwIjoxNjg4MDYzOTg1LCJhdWQiOiJhcGkuYXJjYWRpYS1maW5hbmNlLmlvIiwic3ViIjoiYXBpLmFyY2FkaWEtZmluYW5jZS5pbyIsIkdpdmVuTmFtZSI6IkJvYiIsIlN1cm5hbWUiOiJUaGUgU3BvbmdlIiwiRW1haWwiOiJib2JAc3BvbmdlLmNvbSIsIlJvbGUiOiJDb250cmFjdG9yIn0.
→˓aqTxd6X4z7EFijJsyiuq8mZAKMLG519Bmjz1ra24L-s

1. Navigate to https://jwt.io/ and paste Partner1 JWT token into the website. And check the claim Role.
Partner 1 is a manager.

2. Do the same with Partner2 JWT token. Partner 2 is a contractor

62 Chapter 1. Publish and protect modern applications

https://jwt.io/

API Mgmt and Security Lab

Step 2 - Create a new Claim in APM in order to forward this claim into the Bearer SSO

Note: The providers will inject a Claim into the JWT. This claim is Role. We need to re-inject this claim into the
Bearer SSO token so that NGINX GW only accept requests from users belonging to Manager Role.

1. In the BIG-IP > Federation > Oauth Authorization Server > Claim

2. Click Create

3. Create this Claim

1. Name Claim_Role

2. Claim Type String

3. Claim Name Role

4. Claim Value %{subsession.oauth.scope.last.jwt.Role}

4. Click Save

1.3. Class 3 - Publish and Protect Arcadia API 63

API Mgmt and Security Lab

Step 3 - Modify the Bearer SSO in order to inject this new Claim

Note: Now, it is time to tell to the Bearer SSO profile to inject this claim in the JWT SSO token

1. In Single Sign-on > Oauth Bearer > arcadia-api-sso

2. Add the previous created Claim into the Selected list

3. Click Update

64 Chapter 1. Publish and protect modern applications

API Mgmt and Security Lab

Step 4 - Update the authorization component setting in the controller

Note: Now, the BIG-IP APM is injecting the Claim in the JWT Bearer SSO token. It is time to tell to the NGINX
GW, to only grant access if the Role contains Manager

1. In the controller GUI

2. In APIs > arcadia-api-def, edit the published API prod-api

3. Edit Authentication

1.3. Class 3 - Publish and Protect Arcadia API 65

API Mgmt and Security Lab

4. Click on Enable Conditional Access

5. And enter the values below. This will allow access only if the Claim contains Manager. Select 401 as Failure
Reposonse as 403 is not allowed as reponse type by Adv. Waf (by default)

66 Chapter 1. Publish and protect modern applications

API Mgmt and Security Lab

6. Click Submit and Submit

Step 5 - Make a test

1. In Postman, send a request with Partner1 JWT token. As a reminder, he is Manager. Request passes.

Partner 1:

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.
→˓eyJpc3MiOiJwYXJ0bmVyMSIsImlhdCI6MTU5MzQ1NTk4NSwiZXhwIjoxNjg4MDYzOTg1LCJhdWQiOiJhcGkuYXJjYWRpYS1maW5hbmNlLmlvIiwic3ViIjoiYXBpLmFyY2FkaWEtZmluYW5jZS5pbyIsIkdpdmVuTmFtZSI6IkpvaG5ueSIsIlN1cm5hbWUiOiJSb2NrZXQiLCJFbWFpbCI6Impyb2NrZXRAZXhhbXBsZS5jb20iLCJSb2xlIjoiTWFuYWdlciJ9.
→˓JRboDfKWvSLVU3md6OULGifoVxJ-ryx7y-0DKrOlPOM

2. Then, send the same request with Partner2 JWT token. As a reminder, he is Contractor. Request fails.

Partner 2:

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.
→˓eyJpc3MiOiJwYXJ0bmVyMiIsImlhdCI6MTU5MzQ1NTk4NSwiZXhwIjoxNjg4MDYzOTg1LCJhdWQiOiJhcGkuYXJjYWRpYS1maW5hbmNlLmlvIiwic3ViIjoiYXBpLmFyY2FkaWEtZmluYW5jZS5pbyIsIkdpdmVuTmFtZSI6IkJvYiIsIlN1cm5hbWUiOiJUaGUgU3BvbmdlIiwiRW1haWwiOiJib2JAc3BvbmdlLmNvbSIsIlJvbGUiOiJDb250cmFjdG9yIn0.
→˓aqTxd6X4z7EFijJsyiuq8mZAKMLG519Bmjz1ra24L-s

Note: As you can notice, APM is collecting the different claims and only forward the relevant claims to the internal
API GW. Then, API GWs grant access based on the claim values.

1.3.5 Module 5 - Developer Portal

Note: If you remember, we deployed 3 instances. One for the WebApp, one for the APIs and another one for the
DevPortal. We will use the latest in this lab.

When we uploaded the OAS3 file, this file included the API documentation as well. There is only one step to publish
the documentation into the DevPortal instance.

1.3. Class 3 - Publish and Protect Arcadia API 67

API Mgmt and Security Lab

Step 1 - Create a Dev Portal object

1. In APIs, then Dev Portals create a new Dev Portal object

2. Configure the object as below

1. Name: devportal

2. Display Name: Dev Portal Arcadia

3. Environment: Production Environment

4. Gateway: Gateway Dev Portal

5. Published API: prod-api

68 Chapter 1. Publish and protect modern applications

API Mgmt and Security Lab

6. Click Next

3. Give a Brand name like API for Arcadia Application, and upload any logo if you want

4. Click Next and Submit

Step 2 - Navigate to the Developer Portal

1. RDP to Jumphost as user/user

2. Open Chrome and click on bookmark Dev Portal APIm

1. Click on Explore API and Get Started

1.3. Class 3 - Publish and Protect Arcadia API 69

API Mgmt and Security Lab

Note: Navigate in the Developer Portal. As you can notice, this has been populated automatically thanks to the OAS
file. As a reminder, the OAS file looks like that (this is an extract for the buy stock API).

/trading/rest/buy_stocks.php:
post:
summary: Add stocks to your portfolio
requestBody:
required: true
content:
application/json:
schema:

$ref: '#/components/schemas/buy'
example:

trans_value: '312'
qty: '16'
company: MSFT
action: buy
stock_price: '198'

responses:
'200':

description: 200 response
content:
application/json:

example:
status: success
name: Microsoft
qty: '16'
amount: '312'
transid: '855415223'

70 Chapter 1. Publish and protect modern applications

	Publish and protect modern applications
	Class 1 - Understand the infrastructure and the workflow
	Class 2 - Deploy, Publish and Protect Arcadia Web Application
	Class 3 - Publish and Protect Arcadia API

